Loading...

مقاله موتورهاي هيدروليكي

مقاله موتورهاي هيدروليكي (docx) 18 صفحه


دسته بندی : تحقیق

نوع فایل : Word (.docx) ( قابل ویرایش و آماده پرینت )

تعداد صفحات: 18 صفحه

قسمتی از متن Word (.docx) :

مقدمه :هیدرولیک شاخه ای از فیزیک است که با خواص مکانیکی سیالات سر و کار داشته و موارد استفاده این خصوصیات را در علوم مهندسی بررسی می کند. با وجودی که فقط در حدود 50 سال از عمر این علم می گذرد ، ولی آن را نمی توان شاخه تازه ای از علوم دانست و در حقیقت پاسکال ، دانشمند فرانسوی در قرن هفدهم اصول و قوانین اساسی این علم را پایه گذاشت. عدم توانایی در تولید واشرها و تهیه سطوح کاملا پرداخت شده ، شاید دلایل عمده عدم رشد این علم تا قبل از قرن بیستم باشد. با توجه به پیشرفتهای چشمگیری که در طی چند دهه گذشته در ساخت مواد در زمینه ها و روشهای ماشینکاری حاصل شده است ، موارد استفاده از سیالات در کنترل حرکات مختلف روز به روز بیشتر می گردد. مجموعه پیشرفتهای فنون در عصر فضا و کامپیوتر در سالهای اخیر سرعت و کارایی سیستمهای هیدرولیکی را به گونه ای چشمگیر دگرگون ساخته است ، ولی مبانی حاکم بر همه دستگاهها و اجزای گوناگون همچنان ثابت است. سیستم هیدرولیکی با آب ، روغن و یا سیالات دیگر کار می کند. در این سیستمها در کنار مایع از هوای فشرده یا برخی گازها و سیالات تراکم پذیر هم می توان استفاده کرد.نگاهی گذرا بر رشته های مختلف صنعت نمایانگر گستردگی کاربرد هیدرولیک است. به عنوان مثال در کشاورزی ، خودروسازی ، صنایع هوایی ، راه و ساختمان ، صنایع شیمیایی ، صنایع دفاعی ، صنایع چوب ، صنایع دریایی ، جابجایی مواد ، ماشین کاری ، معدنکاری ، بسته بندی ، صنعت نفت ، صنعت چاپ ، لاستیک سازی ، راه آهن ، نساجی ، صنعت فولاد و حتی منازل و مراکز عمومی کاربرد هیدرولیک دیده می شود. مثلا در صنایع هوایی خلبان به یاری هیدرولیک ، باز و بسته شدن چرخها ، سکانهای عمودی ، بالابر ها و بالچه ها را مهار می کند. عملیات ریخته گری تحت فشار یک مرحله ای برای ساخت قطعات سبک از آلومینیوم و منیزیم از نیروی هیدرولیک برای بستن قالبها و تزریق فلز استفاده می کند. بدنه هواپیما را نیز با پرسهای کششی که با نیروی هیدرولیک کار می کند شکل می دهند.سیستم هیدرولیک در موارد زیر کاربرد دارددر صنعت کشاورزی : که کشاورز در ضمن راندن تراکتور می تواند از توان سیال استفاده کند و همچنین در دستگاهای نظیر خرمن کوب و کمباین و کلوخ شکن و میوه چین و ماشین حفاری و بیل مکانیکی می توان کاربرد هیدرولیک را مشاهده کرد.در خودرو سازی : ترمز هیدرولیک و فرمان هیدرولیک و تنظیم پنوماتیکی صندلی و همچنین در مراحل ساخت بدنه و شکل دادن به ورق خودرو که از پرسهای با تنهای مختلف استفاده می شود.در صنایع هوایی : خلبان با کمک این سیستم ارابه های فرود و شهپرها و سکانهای عمودی و بالا برها و بالچه ها را مهار می کند و بدنه هواپیما هم با پرسهای کششی ساخته می شود و جالب است که برای تست اینکه بدانند بدنه هواپیما سوراخ نشده باشد فشار باد را بین جداره های بدنه قرار می دهند در صورتی که افت فشار داشتیم می فهمیم که جایی از بدنه سوراخ است.صنایع دفاعی : در هدایت تانک ، نفربر و هدایت موشک و ناوها و...صنایع غذایی : کنسرو سازی و ظروف یکبار مصرف و ...صنایع چوب : برش الوار و پرداخت سطوح مبلهاجابه جایی مواد ( لیفتراک و جرثقیل و ... )ماشین تراشکاری و cnc و نظیر این دستگاه هاصنایع دریایی : بالا کشیدن تور آب و کشیدن کشتی به ساحل و...معدن : در ماشینهای معدن و راسولها و قلعه بردر صنایع بسته بندی : پر کن شیشه های نوشابه و ماشین چسب زنی و لفاف پیچیکاغذ سازی : در این صنعت خمیر کاغذ باید از غلتک ها بگذرد و مهمترین هیدرولیک و پنوماتیک تنظیم غلتک ها است.صنعت نفت : پالایشگاههاصنایع پلاستیک : دستگاه های تزریق پلاستیک و آلومنیومصنعت چاپ : چاپ بر روی مقوا با شابلون و چاپ بر روی گونی و کاغذ و ...راه آهن : ترمز قطار و دربهای اتوماتیکلاستیک : پرسهای هیدرولیک و غلتک های مخلوط کننده مواد ، برای تولید مواد اولیه لاستیکصنعت فولاد : فشار زیاد برای کشش آهن و یا فلزات دیگر و تخلیه کوره ها که در ذوب آهن و فولاد مبارکه و... شاهد آن هستیم. مایعات تقریباً تراکم ناپذیر هستند. این ویژگی سبب شده است که از مایعات به عنوان وسیله مناسبی برای تبدیل و انتقال کار استفاده شود. بنابراین می‌توان از آنها برای طراحی ماشینهایی که در عین سادگی، با نیروی محرک خیلی کم بتواند نیروی مقاوم فوق العاده زیادی را جابجا نماید، استفاده نمود. به این ویژگی و همچنین دانش مطالعه این ویژگی هیدرولیک گفته می‌شود. امروزه در بسیاری از فرآیندهای صنعتی ، انتقال قدرت آن هم به صورت کم هزینه و با دقت زیاد مورد نظر است در همین راستا بکارگیری سیال تحت فشار در انتقال و کنترل قدرت در تمام شاخه‌های صنعت رو به گسترش است. استفاده از قدرت سیال به دو شاخه مهم هیدرولیک و نیوماتیک ( که جدیدتر است ) تقسیم می‌شود . از نیوماتیک در مواردی که نیروهای نسبتاً پایین (حدود یک تن) و سرعت های حرکتی بالا مورد نیاز باشد (مانند سیستم‌هایی که در قسمت‌های محرک رباتها بکار می‌روند) استفاده می‌کنند در صورتیکه کاربردهای سیستم‌های هیدرولیک عمدتاً در مواردی است که قدرتهای بالا و سرعت های کنترل شده دقیق مورد نظر باشد(مانند جک های هیدرولیک ، ترمز و فرمان هیدرولیک و...). حال این سوال پیش می‌آید که مزایای یک سیستم هیدرولیک یا نیوماتیک نسبت به سایر سیستم‌های مکانیکی یا الکتریکی چیست؟در جواب می‌توان به موارد زیر اشاره کرد: ۱) طراحی ساده ۲) قابلیت افزایش نیرو ۳) سادگی و دقت کنترل ۴) انعطاف پذیری ۵) راندمان بالا ۶) اطمینان در سیستم های هیدرولیک و نیوماتیک نسبت به سایر سیستم‌های مکانیکی قطعات محرک کمتری وجود دارد و می‌توان در هر نقطه به حرکتهای خطی یا دورانی با قدرت بالا و کنترل مناسب دست یافت ، چون انتقال قدرت توسط جریان سیال پر فشار در خطوط انتقال (لوله‌ها و شیلنگ ها) صورت می‌گیرد ولی در سیستم‌های مکانیکی دیگر برای انتقال قدرت از اجزایی مانند بادامک ، چرخ دنده ، گاردان ، اهرم ، کلاچ و... استفاده می‌کنند. در این سیستم‌ها می‌توان با اعمال نیروی کم به نیروی بالا و دقیق دست یافت همچنین می‌توان نیرو های بزرگ خروجی را با اعمال نیروی کمی (مانند بازو بسته کردن شیرها و ...) کنترل نمود. استفاده از شیلنگ های انعطاف پذیر ، سیستم های هیدرولیک و نیوماتیک را به سیستم‌های انعطاف پذیری تبدیل می‌کند که در آنها از محدودیتهای مکانی که برای نصب سیستم‌های دیگر به چشم می‌خورد خبری نیست. سیستم های هیدرولیک و نیوماتیک به خاطر اصطکاک کم و هزینه پایین از راندمان بالایی برخوردار هستند همچنین با استفاده از شیرهای اطمینان و سوئیچهای فشاری و حرارتی می‌توان سیستمی مقاوم در برابر بارهای ناگهانی ، حرارت یا فشار بیش از حد ساخت که نشان از اطمینان بالای این سیستم‌ها دارد. اکنون که به مزایای سیستم های هیدرولیک و نیوماتیک پی بردیم به توضیح ساده‌ای در مورد طرز کار این سیستم‌ها خواهیم پرداخت. برای انتقال قدرت به یک سیال تحت فشار (تراکم پذیر یا تراکم ناپذیر) احتیاج داریم که توسط پمپ های هیدرولیک می‌توان نیروی مکانیکی را تبدیل به قدرت سیال تحت فشار نمود. مرحله بعد انتقال نیرو به نقطه دلخواه است که این وظیفه را لوله ها، شیلنگ ها و بست ها به عهده می‌گیرند . بعد از کنترل فشار و تعیین جهت جریان توسط شیرها سیال تحت فشار به سمت عملگرها (سیلندرها یا موتور های هیدرولیک ) هدایت می‌شوند تا قدرت سیال به نیروی مکانیکی مورد نیاز(به صورت خطی یا دورانی ) تبدیل شود. اساس کار تمام سیستم های هیدرولیکی و نیوماتیکی بر قانون پاسکال استوار است. ● قانون پاسکال: ۱) فشار سرتاسر سیال در حال سکون یکسان است .(با صرف نظر از وزن سیال) ۲) در هر لحظه فشار استاتیکی در تمام جهات یکسان است. ۳) فشار سیال در تماس با سطوح بصورت عمودی وارد می‌گردد. کار سیستم‌های نیوماتیک مشابه سیستم های هیدرولیک است فقط در آن به جای سیال تراکم ناپذیر مانند روغن از سیال تراکم پذیر مانند هوا استفاده می‌کنند . در سیستم‌های نیوماتیک برای دست یافتن به یک سیال پرفشار ، هوا را توسط یک کمپرسور فشرده کرده تا به فشار دلخواه برسد سپس آنرا در یک مخزن ذخیره می‌کنند، البته دمای هوا پس از فشرده شدن بشدت بالا می‌رود که می‌تواند به قطعات سیستم آسیب برساند لذا هوای فشرده قبل از هدایت به خطوط انتقال قدرت باید خنک شود. به دلیل وجود بخار آب در هوای فشرده و پدیده میعان در فرایند خنک سازی باید از یک واحد بهینه سازی برای خشک کردن هوای پر فشار استفاده کرد. اکنون بعد از آشنایی مختصر با طرز کار سیستم‌های هیدرولیکی و نیوماتیکی به معرفی اجزای یک سیستم هیدرولیکی و نیوماتیکی می پردازیم. ● اجزای تشکیل دهنده سیستم های هیدرولیکی: ۱) مخزن : جهت نگهداری سیال ۲) پمپ : جهت به جریان انداختن سیال در سیستم که توسط الکترو موتور یا ۳) موتور های احتراق داخلی به کار انداخته می‌شوند. ۴) شیرها : برای کنترل فشار ، جریان و جهت حرکت سیال ۵) عملگرها : جهت تبدیل انرژی سیال تحت فشار به نیروی مکانیکی مولد کار(سیلندرهای هیدرولیک برای ایجاد حرکت خطی و موتور های هیدرولیک برای ایجاد حرکت دورانی). ● اجزای تشکیل دهنده سیستم های نیوماتیکی: ۱) کمپرسور ۲) خنک کننده و خشک کننده هوای تحت فشار ۳) مخزن ذخیره هوای تحت فشار ۴) شیرهای کنترل ۵) عملگرها ● یک مقایسه کلی بین سیستم‌های هیدرولیک و نیوماتیک: ۱) در سیستم‌های نیوماتیک از سیال تراکم پذیر مثل هوا و در سیستم‌های هیدرولیک از سیال تراکم ناپذیر مثل روغن استفاده می‌کنند. ۲) در سیستم‌های هیدرولیک روغن علاوه بر انتقال قدرت وظیفه روغن کاری قطعات داخلی سیستم را نیز بر عهده دارد ولی در نیوماتیک علاوه بر روغن کاری قطعات، باید رطوبت موجود در هوا را نیز از بین برد ولی در هر دو سیستم سیال باید عاری از هر گونه گرد و غبار و نا خالصی باشد ۳) فشار در سیستم‌های هیدرولیکی بمراتب بیشتر از فشار در سیستم‌های نیوماتیکی می‌باشد ، حتی در مواقع خاص به ۱۰۰۰ مگا پاسکال هم می‌رسد ، در نتیجه قطعات سیستم‌های هیدرولیکی باید از مقاومت بیشتری برخوردار باشند. ۴) در سرعت های پایین دقت محرک های نیوماتیکی بسیار نامطلوب است در صورتی که دقت محرک های هیدرولیکی در هر سرعتی رضایت بخش است . ۵) در سیستم‌های نیوماتیکی با سیال هوا نیاز به لوله‌های بازگشتی و مخزن نگهداری هوا نمی‌باشد. ۶) سیستم‌های نیوماتیک از بازده کمتری نسبت به سیستم‌های هیدرولیکی برخوردارند. پمپ هیدرولیک : که با استفاده از آن میتوان سیال را از یک محیط به محیط دیگر جابجا کرد که خود در انواع مختلف بر حسب نوع مصرف در دستگاه ها و مقدار لیتر و فشار فرق می کند. توجه داشته باشید که با زیاد کردن دور محرک پمپها میتوان لیتر را کم و زیاد کرد که محرک پیمها می تواند الکترومتور ( در جایی که نیاز به حرکت دستگاه نباشد یا جزئی باشد) موتور دیزل ( تراکتور و لودر و بلدوزر و لفتراک و کشتی ها ) نیروی محرک دست یا پا ( در وسایل امدادی و جرثقیل های دستی و در بعضی موارد روغن کاری دستگاه ها و جاهایی که نیروهای محرک دیگری در دسترس نباشد) . هر چه میزان لیتر سیال زیاد باشد ، سرعت بیشتری داریم که برای کم و زیاد کردن فشار باشد از نوعی والو که به آن فشار شکن گفته می شود ، استفاده کرد که واحد فشار بار یا پی اس ای هست و میزان فشار را با گیج ( مانومتر ) اندازه می گیریم ، با زیاد شدن فشار در سیستم هیدرولیک و پنوماتیک میزان نیرو زیاد می شود و در نتیجه قدرت بیشتری ایجاد می شود و هر کدام از پمپ ها با یک فشار یکسان کار می کنند و دوام بیشتری دارند. سیستم های هیدرولیکی : اساس کار سیستمهای هیدرولیکی ساده و معمولی و بر سه اصل و سه دسته اجزاء استوار است که عبارتند از : فشار فقط زمانی ایجاد می شود که بر سر راه سیال مقاومت ایجاد شود. سیال همیشه مسیر با مقاومت پائین تر را برای جاری شدن انتخاب می کند. پمپ فقط تولید جریان می کند. سه دسته اجزاء ذکر شده عبارتند از : پمپ روغن. عنصری شامل پیستون که با عضو گردان که به کمک سیال به حرکت در می آید. لوله کشی و شیرآلات برای کنترل جریان سیال. با کمک این اجزاء در سیستمهای هیدرولیکی ساده و ابتدایی می توان ترکیبات گوناگون به وجود آورد و به سیستمهای پیچیده تر و کاملتر تبدیل کرد. مثلا از یک یا چند پمپ روغن می توان برای به حرکت در آوردن یک یا چند سیلندر استفاده کرد و چندین شیر کنترل را هم در سیستم می توان کار گذاشت. پیستون عمل کننده می تواند هر نوع حرکت دلخواه را انجام دهد ، معمولا حرکت رفت و برگشتی در مسیر مستقیم کاربرد بیشتری دارد. به کمک موتورهای هیدرولیک می توان حرکت دورانی هم بدست آورد. سیستمهای هیدرولیکی ویژگیها و مزایای منحصر به فردی دارند که در برآورد نیازهای گوناگون کاری ، از اهمیت بسیاری برخوردار است. مزایای سیستم هیدرولیکی : اتصال اجزاء به یکدیگر با لوله یا شیلنگ و با کمک اتصالات فوری ، به آسانی انجام می شود. از سیال می توان برای ضربه گیری استفاده کرد. طراحی این سیستم ها آسان است. امکان اتوماسیون وجود دارد. بسیاری از حرکتها و فعالیتها با عملکرد ساده شیرها بدست می آیند. توانایی تولید نیروهای بزرگ و امکان انتقال نیرو در حد وسیع. کاهش تلفات انرژی. حرکت پیستون عمل کننده را می توان به سرعت تغییر داد. مشخصه های سیال مانند فشار و دبی به آسانی قابل تنظیم است. کنترلها معمولا ساده و با کارایی بسیار و شکل متمرکز صورت می گیرند و به طور کلی اجزای متحرک مکانیکی در سیستمهای هیدرولیکی اندک اند و این خود به معنی قابلیت اطمینان بالای سیستم و هزینه ناچیز نگهداری است. البته سیستمهای هیدرولیکی معایبی هم مانند قیمت بالای قطعات و همچنین محدودیت در ذخیره انرژی هیدرولیک را دارا می باشند که البته این معایب در بسیاری از اوقات در مقایسه با مزایای مذکور قابل چشم پوشی می باشند. سوپاپهای هیدرولیکی(hydraulic valves) وظیفه ی سوپاپها در گیربکس اتوماتیک درگیر کردن و یا خلاص کردن کلاچها و باندها می باشد. سوپاپها در محفظه ای به نام جعبه ساعت قرار دارند. سوپاپها با توجه به وظایفشان به دو دسته تقسیم میشوند. · سوپاپهای تعیین کننده ی مسیر جریان و فشار، که خط سیر روغن را مشخص میکند. این سوپاپها یک مسیر را قطع و یا وصل میکنند . بدون اینکه فشار مدار را کم و زیاد کند این سوپاپها معمولا بنام سوپاپهای تعویض نامیده میشوند. · سوپاپهای تنظیم کننده که جریان و فشار را کنترل میکنند.این سوپاپها فشار روغن را هنگامی که از ان عبور میکند تغییر میدهند . اشنایی کلی با هیدرولیک پمپ به عنوان قلب سیستم هیدرولیک، توان مکانیکی را که بوسیله موتورهای الکتریکی یا احتراق داخلی تامین می گردد به توان هیدرولیکی تبدیل می کند. پمپ فقط مولد جریان سیال بوده و سطح فشار ایجاد شده به میزان بار مقاومی که توسط عملگر سیستم هیدرولیک بر آن غلبه ميشود، بستگی دارد. پمپ جابجايي مثبت به ازاء هر دو ر چرخش محور پمپ ،مقدار مشخصي از سيال را به سيستم هيدروليك ارسال مينمايد. پمپ جابجائی مثبت (دبی ثابت و متغییر ) شامل انواع پمپ دنده ای ، پره ای و پیستونی محوری و شعاعی ميباشد. پمپ پيستونيپمپ پره اي در انتخاب پمپهاي با جابجايي ثابت موارد ذيل بايد در نظر گرفته شود: •قطر دهانه هاي پمپ •فشار كاري در خروجي پمپ •فشار كاري در ورودي پمپ •سرعت دوران پمپ •حجم جابجايي روغن •دبي موثر •توان موتور محرك پمپ •دماي كاري روغن •درجه ويسكوزيته •فيلتراسيون پمپ پره اي پمپ پيشتوني 624840371475 نحوه انتخاب پمپهاي هيدروليك اولين مرحله در انتخاب مدار تغذيه و تعيين پمپ مناسب براي يك كاربرد معين در سيستمهاي هيدروليك، بررسي ميزان فشار و جريان مورد نياز در مدار است. ابتدا منحني هاي جريان و فشار در يك سيكل زماني بايد بررسي شود. سپس همزماني مصرف درالمانهاي مختلف تعيين گردد. بدين نحو حداكثر جريان مورد نياز مشخص ميگردد. براي تعيين يك مدار تغذيه مناسب به موارد ذيل بايد توجه نمود: 1) در سايزينگ پمپ ها در عمل حدود ده درصد به دبي تعيين شده از طريق محاسبات تئوريك اضافه مينمايند. 2) در انتخاب شير اطمينان (فشار شكن)، فشار تنظيمي بايد ده درصد بيشتر از فشار كاري سيستم باشد. هر دو مورد (1) و (2) باعث ميشود توان بيشتري در سيستم هيدروليك تزريق شود. با تعیین فشار کاری و دبی مصرفی روغن، توان مورد نیاز براي الكتروموتور گرداننده پمپ در سیستم با استفاده از فرمول زیر محاسبه میشود : P(KW) = [Q(lit/min) X p(bar)]/600 در اين رابطه P توان ، Q دبي و p فشار ميباشد. رابطه فوق بدون در نظر گرفتن راندمانهاي مكانيكي و حجمي ارائه شده است. براي مثال توان الكترو موتور در سيستم هيدروليكي با فشار كاري 120bar و دبي 30lit/min به صورت زير محاسبه ميشود: P= 30X120/600 =6 kW رنج توانهاي استاندارد الكتروموتورها(kW) 2218.515117.55.5432.21.5 با توجه به رنج استاندارد توان الكترو موتورها ، مقدار 7.5kW مناسب ميباشد. 9753601377954123055446405مدار Unloading پمپ Pressure-compensated pump Hi-lo circuit بررسي آلاينده ها در سيستم هيدروليك يكي از علومي كه بيشترين كاربرد را در صنايع مختلف به خود اختصاص داده, علم هيدروليك است. البته علوم ديگري نظير شيمي, مكانيك سيالات و ترموديناميك نيز به كمك اين علم آمده و تلفيقي از آنها را به صورت ساده در يك سيستم هيدروليك مي توان مشاهده كرد. از طرفي با توجه به نقش اساسي و مهم سيال هيدروليك (انتقال نيرو), بحث آلايندگي آن از اهميت بسيار زيادي برخوردار است. در يك سيستم هيدروليك, سيال هيدروليك با تغيير جهت نيرو و همچنين تغيير مقدار آن باعث حذف يك سري از عمليات مكانيكي در سيستم مي شود كه بعنوان مثال از حذف استفاده از دنده ها, اهرم ها و نيز حذف تنش هاي شديد اجزاي مي توان سيستم نام برد. همچنين سيال هيدروليك به دليل انتقال سريع نيرو و تا فاصله زياد, در شرايط دما و فشار بالا بازدهي بهتري خواهد داشت. براساس نظر كارشناسان تعميرات و نگهداري, حدود80 درصد خرابي ها در سيستم هيدروليك, نتيجه مستقيم آلودگي سيال آن است. بنابراين با انتخاب يك سيال مناسب و همچنين كنترل آلاينده ها مي توان آسيب هاي ناشي از آلاينده ها را به حداقل رساند. در اين مقاله آلاينده هاي سيستم هيدروليك به طور اجمالي معرفي شده و هر كدام به صورت جداگانه بررسي مي شود. حرارت بيش از اندازه (Over Heat) متاسفانه در بسياري از موارد, حرارت به عنوان يك آلاينده در نظر گرفته نمي شود. يكي از عوامل بوجود آمدن حرارت بيش از اندازه در سيستم مي تواند مربوط به انتخاب نادرست گريد (ISO VG) روغن هيدروليك باشد. بدين ترتيب كه چون در شرايط روانكاري هيدرو ديناميك تنها اصطكاك موجود, اصطكاك داخلي روغن در گردش است, اگر گريد مصرفي بيش از گريد توصيه شده باشد به دليل افزايش اصطكاك داخلي, دماي روغن به شدت افزايش مي يابد. بر اثر افزايش غيرعادي دماي روغن, روند اكسيداسيون از حالت تدريجي خارج شده و روغن پايه به سرعت اكسيد مي شود. (پس از شروع اكسيداسيون به ازاي هر15 درجه سانتيگراد افزايش دما, شدت اكسيداسيون, دو برابر مي شود) نتيجه اين امر كاهش ادتيوهاي آنتي اكسيدان و در نهايت كاهش عمر مفيد روغن خواهد بود. از دلايل ديگر Over Heat مي توان به انجام تماس فلز با فلز در اثر وجود اشكال فني در سيستم و برقراري شرايط روانكاري مرزي اشاره كرد كه باعث سايش مكانيكي قطعات مي شود. در برخي موارد نيز بدليل طراحي نامناسب, انتقال حرارت موثر بين سيستم و محيط انجام نشده و در شرايط آب و هوايي گرم, تاثير پذيري سيستم از محيط بسيار زياد مي شود. در نهايت با افزايش عدد اسيدي و تحليل ادتيوها در روغن, ميزان خوردگي و زنگ زدگي قطعات نيز افزايش مي يابد. از طرف ديگر بدليل افزايش گرانروي روغن (اكسيداسيون) جريان روغن درون سيستم كاهش يافته و بدليل افت فشار, دقت كنترل سيستم كاهش خواهد يافت. براي رفع چنين مشكلاتي در سيستم مي توان ضمن انتخاب صحيح گريد سيال هيدروليك و نيز اطمينان از طراحي مناسب, با افزايش ظرفيت تغذيه روغن و همچنين افزايش سرعت گردش آن, دماي روغن را در حد مطلوب كنترل كرد كه بنا به عقيده كارشناسان تعميرات دماي روغن در مخزن اصلي هيدروليك, نبايد از60 درجه سانتيگراد تجاوز كند. آلايندگي ذرات جامد (Solid Particle Contamination) در يك سيستم هيدروليك بدليل اينكه امكان حذف كامل ذرات جامد از سيال هيدروليك وجود ندارد, بناچار براي آلايندگي ناشي از ذرات, يك محدوده تعريف مي شود. در سيستم هاي امروزي كه داراي لقي مجاز (Clearance) بسيار كمي بوده و در فشارهاي به نسبت بالا (بيشتر از 7 bar ) كار مي كنند كنترل آلاينده هاي جامد از اهميت بسيار زيادي برخوردار است. منابع ورود ذرات جامد به سيستم مي تواند از طريق هواي ورودي به سيستم از محيط (گرد و غبار), ذرات عبوري از آب بندها, باقي ماندن ذرات درون سيستم هنگام نصب قطعات و نيز ذرات حاصل از سايش داخلي قطعات باشد. حضور اين ذرات در سيستم مي تواند سبب بوجود آمدن صدمات مكانيكي (پارگي شيلنگها و شكستن Valve ها), سايش و خراشيدگي سطوح فلزي, گرفتگي فيلترها و در نهايت ايجاد افت فشار در سيستم شود كه نتيجه اين امر كاهش ميزان توليد و افزايش هزينه هاي كلي تعميرات خواهد بود. براي جلوگيري از ورود ذرات به سيستم, بايد تمامي سيالات, قبل از ورود به مخزن, فيلتر شده و در نواحي قرارگيري سيستم در معرض هواي محيط, فيلترهاي مناسب بكارگرفته شوند. هم چنين فلاشينگ نهايي سيستم پس از نصب قطعات (قبل از راه اندازي) و نيز بازرسي شرايط آب بندها و درپوش مخازن مركزي مي تواند مانع ورود ذرات جامد به سيستم شود. از طرفي بررسي فيلترها از نظر مش صحيح ( اندازه منافذ و تعداد) و جنس آنها با توجه به نوع عمليات, مي تواند بازدهي فيلتراسيون را در سيستم افزايش داده و با در نظر گرفتن لقي مجاز قطعات مي توان محدوده مناسبي براي آلاينده ها تعريف كرد. يكي از روشهاي اندازه گيري, روش اسپكتروسكوپي است كه بدليل محدوديت اين روش (عدم اندازه گيري ذرات بزرگتر از7 ميكرون), روش هاي ديگري نظير NAS و اخيراً روش ISO 4406 بكار گرفته مي شوند. در اين روشها, با توجه به لقي مجاز قطعات و توصيه سازنده اصلي تجهيزات (OEM) يك محدوده بعنوان كد تميزي سيستم در نظر گرفته مي شود, بدين ترتيب كه بوسيله شمارش الكترونيكي ذرات با توجه به سايز آنها (در محدوده بين5,2 تا15 ميكرون) كد تميزي سيستم مشخص مي شود. بعنوان مثال سازنده ويكرز براي يك سيستم هيدروليك كد ISO 4406 18/16/13 معادل با NAS 1638 Level 7 را بعنوان كد تميزي سيستم در نظر گرفته است كه اگر ميزان آلاينده ها از اين حد تجاوز كند, با بهبود فيلتراسيون ( يا تعويض فيلتر) و در صورت لزوم جايگزيني روغن جديد مي توان آثار مخرب آلاينده ها را به حداقل رساند. آلايندگي آب (Water Contamination) : ميزان ايده آل آب در يك سيال هيدروليك, كمتر از ميزان اشباع آن (در دماي عملياتي دستگاه) است. حدود (200-300)ppm آب مي تواند بصورت محلول در سيال پايه معدني وجود داشته باشد بدون اينكه رنگ روغن تغيير كند. اگر ميزان آب به 500 ppm افزايش يابد, روغن كمي كدر شده و به اصطلاح ظاهر آن ابري مي شود. بالاترين ميزان مجاز آب در يك سيال هيدروليك 100 ppm بوده و اگرميزان آب از 0.1 درصد وزني تجاوز كند, بصورت‌ آب آزاد ظاهر خواهد شد. آب بدليل كاهش مقاومت فيلم روانكار باعث افزايش شدت سايش شده و در حضور فلزاتي نظير مس, شدت سايش دو برابر خواهد شد. از طرفي بدليل كاهش ادتيوهاي R&O , ميزان خوردگي و زنگ زدگي سطوح فلزي افزايش يافته و در حضور كاتاليزورهاي فلزي, تخريب سطوح چند برابر مي شود. همچنين بدليل انجام سريع اكسيداسيون, لجن اسيدي در سيستم ايجاد شده و راندمان فيلتراسيون كاهش مي يابد. بهترين روش براي اندازه گيري ميزان آب, آزمايش كارل فيشر است. براي جلوگيري از ورود آب به سيستم مي توان به مواردي نظير دقت در انبارداري صحيح, برطرف كردن نشتي از مبدلهاي حرارتي يا ورودي هاي مخزن و تعويض آب بندهاي آسيب ديده, اشاره كرد. آلايندگي هوا (Air Contamination) : يكي ديگر از آلاينده هايي كه در ارتباط با سيال هيدروليك مي توان به آن پرداخت, حبابهاي هواست. خروج حبابهاي درون سيال در مواقعي كه فشار اعمال شده روي سيال از فشار اشباع حلاليت هوا در آن كمتر باشد, مي تواند با شكستن و از بين رفتن ناگهاني باعث بروز حوادثي نظير كاويتاسيون شود. يكي ديگر از صدماتي كه حضور حبابهاي هوا درون روغن هيدروليك ايجاد مي كند, توليد كف (تراكم پذير) و افزايش شديد درجه حرارت بدليل كاهش حجم درون سيلندر هيدروليك است كه اين افزايش دماي ناگهاني باعث تسريع روند اكسيداسيون خواهد شد. براي جلوگيري از ورود هوا به سيستم مي توان با تامين هد مورد نياز پمپ از بوجود آمدن افت فشار در اريفيس ها و همچنين مقاومت در مكش و هواگيري پمپ ها جلوگيري كرد. در برخي موارد باز و بسته شدن سريع شير كنترل ها (ايجاد توربولنسي), تنفس كلاهك مخزن و ورودي هاي سيستم مي تواند بعنوان منابع ورود هوا به سيستم باشند كه با رفع اين عيوب, تشكيل حبابهاي هوا در سيال هيدروليك به پايين ترين ميزان ممكن خواهد رسيد. مشكل نشتي (Leakage) متاسفانه در جامعه صنعتي, نشتي بعنوان يك امر معمولي در نظر گرفته شده و براي رفع آن, تلاش جدي صورت نمي گيرد. بررسي آثار نامطلوب نشتي در يك سيستم مي تواند اهميت آنرا بيش از پيش مشخص ساخته و تاثير آن را در كيفيت محصول نهايي و افزايش هزينه هاي تمام شده, نشان دهد. در يك سيستم هيدروليك بدليل نشتي, همواره ميزان مصرف روغن از ظرفيت واقعي مخزن بيشتر بوده و هزينه هاي مربوط به خريد روانكار افزايش مي يابد. از طرفي بدليل كاهش جريان روغن و ايجاد افت فشار, دقت كنترلي سيستم كاهش يافته و بعلت كاركرد نامنظم سيستم, مشخصات محصول نهايي (مثلاً ابعاد) بر موارد از پيش تعيين شده منطبق نخواهدبود. در ارتباط با معضل نشتي در كنار آثار مخرب زيست محيطي (ورود روغن به منابع آب و خاك), احتمال قرار گرفتن روغن در معرض سطوح داغ (دستگاههاي دايكاست و تزريق پلاستيك) و اشتعال آن وجود داشته و بروز حوادثي نظير آتش سوزي محتمل خواهد بود. نكته بسيار مهم ديگر در ارتباط با نشتي اين است كه تمامي آلاينده هاي ياد شده مي توانند از محل نشت روغن وارد سيستم شده و استهلاك زودرس تجهيزات و ماشين آلات را باعث شوند. بنابراين بازرسي منظم اتصالات و آب بندها و تعويض آنها در صورت لزوم مي تواند در كاركرد مطمئن ماشين آلات, موثر باشد. يكي ديگر از روشهاي جلوگيري از نشتي, بحث سازگاري سيال هيدروليك با الاستومرها و انتخاب مناسب سيال هيدروليك از نظر نقطه آنيلين است. بدين معني كه نقطه آنيلين معرف ميزان تركيبات آروماتيك در روغن بوده و اگر از ميزان توصيه شده بيشتر باشد, باعث تورم آب بندها شده و اگر كمتر از حد مجاز باشد سبب سفت شدن اتصالات و كاهش حجم آنها مي شود. از روش هاي موثر ديگر جلوگيري از نشتي, انتخاب صحيح آب بندها (از نظر دما, فشار و شدت جريان), تنظيم دماي سيال هيدروليك (حداقل نگه داشتن دماي سيال) و بالانس مكانيكي سيستم (در يك راستا قرار گرفتن شفت پمپ و موتور) است كه با اجراي اين روشها مي توان ميزان نشتي را به حداقل رساند. بررسی سيستمهای هيدروليك و پنوماتيك در پرسهای سنگین در این پروژه شما با ساختار سيستمهای هيدروليك و پنوماتيك در پرسهای سنگین آشنا و به بررسی اجزای تشكيل دهنده سيستمهای هيدروليكی ، سيالات هيدروليك و محاسبات مربوط به سيستمهای هيدروليكی بپردازید. طراحی جعبه فرمان هيدروليك شانه ای در این پروژه شما می توانید با طراحی جعبه فرمان هیدرولیک شانه ای برای خودروهای سواری که از سیستم تعلیق خودرو مجزا می باشد آشنا شده و به طراحی كامل سينماتيك و تحليل تنش خمشی و هرتز وارد بر چرخدنده های پينيون و شانه ای با استفاده از استاندارد انجمن سازندگان چرخدنده امريكا (AGMA)، طراحی و انتخاب پمپ هيدروليك بكار رفته در خودرو برای تأمين نيروی كمكی مورد نياز براي راننده، طراحی مدارهای هيدروليكی، تعيين جنس چرخدنده شانه ای با استفاده از آزمايشگاه ميكروسكوپ الكترونی جستجو گر (SEM) و طراحی اتصالات مكانيكی جعبه فرمان بپردازید. موتور پمپهای هيدروليكي مقاله ارائه شده با عنوانی که در ذیل بدان اشاره شده در مورد نوع جديدی از موتور پمپهای هيدروليكي با قابلیت وارونه پذیری است که در این مقاله پژوهشگران روسی به بررسی ساختار اینگونه موتورها پرداخته اند.

نظرات کاربران

نظرتان را ارسال کنید

captcha

فایل های دیگر این دسته